3.224 \(\int (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=63 \[ \frac {B \tan ^3(c+d x)}{3 d}+\frac {B \tan (c+d x)}{d}+\frac {C \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {C \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

1/2*C*arctanh(sin(d*x+c))/d+B*tan(d*x+c)/d+1/2*C*sec(d*x+c)*tan(d*x+c)/d+1/3*B*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3010, 2748, 3767, 3768, 3770} \[ \frac {B \tan ^3(c+d x)}{3 d}+\frac {B \tan (c+d x)}{d}+\frac {C \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {C \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(C*ArcTanh[Sin[c + d*x]])/(2*d) + (B*Tan[c + d*x])/d + (C*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (B*Tan[c + d*x]^3
)/(3*d)

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=\int (B+C \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=B \int \sec ^4(c+d x) \, dx+C \int \sec ^3(c+d x) \, dx\\ &=\frac {C \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} C \int \sec (c+d x) \, dx-\frac {B \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {C \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {B \tan (c+d x)}{d}+\frac {C \sec (c+d x) \tan (c+d x)}{2 d}+\frac {B \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 60, normalized size = 0.95 \[ \frac {B \left (\frac {1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac {C \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {C \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(C*ArcTanh[Sin[c + d*x]])/(2*d) + (C*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (B*(Tan[c + d*x] + Tan[c + d*x]^3/3))/
d

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 88, normalized size = 1.40 \[ \frac {3 \, C \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, C \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, B \cos \left (d x + c\right )^{2} + 3 \, C \cos \left (d x + c\right ) + 2 \, B\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/12*(3*C*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*C*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(4*B*cos(d*x +
c)^2 + 3*C*cos(d*x + c) + 2*B)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [B]  time = 0.51, size = 122, normalized size = 1.94 \[ \frac {3 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/6*(3*C*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*C*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(6*B*tan(1/2*d*x + 1/
2*c)^5 - 3*C*tan(1/2*d*x + 1/2*c)^5 - 4*B*tan(1/2*d*x + 1/2*c)^3 + 6*B*tan(1/2*d*x + 1/2*c) + 3*C*tan(1/2*d*x
+ 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 0.26, size = 72, normalized size = 1.14 \[ \frac {C \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {2 B \tan \left (d x +c \right )}{3 d}+\frac {B \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)

[Out]

1/2/d*C*tan(d*x+c)*sec(d*x+c)+1/2/d*C*ln(sec(d*x+c)+tan(d*x+c))+2/3*B*tan(d*x+c)/d+1/3/d*B*tan(d*x+c)*sec(d*x+
c)^2

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 70, normalized size = 1.11 \[ \frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B - 3 \, C {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*B - 3*C*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1)
 + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 2.91, size = 111, normalized size = 1.76 \[ \frac {C\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {\left (2\,B-C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {4\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+\left (2\,B+C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/cos(c + d*x)^5,x)

[Out]

(C*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)^5*(2*B - C) + tan(c/2 + (d*x)/2)*(2*B + C) - (4*B*tan(c/
2 + (d*x)/2)^3)/3)/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________